Physicists at the University of Geneva have succeeded in teleporting the quantum state of a photon to a crystal over 25 kilometers of optical fiber.

The experiment, carried out in the laboratory of Professor Nicolas Gisin, constitutes a first, and simply pulverises the previous record of 6 kilometres achieved ten years ago by the same UNIGE team. Passing from light into matter, using teleportation of a photon to a crystal, shows that, in quantum physics, it is not the composition of a particle which is important, but rather its state, since this can exist and persist outside such extreme differences as those which distinguish light from matter. The results obtained by Félix Bussières and his colleagues are reported in the latest edition of Nature Photonics.

Quantum physics, and with it the UNIGE, is again being talked about around the world with the Marcel Benoist Prize for 2014 being awarded to Professor Nicolas Gisin, and the publication of experiments in Nature Photonics. The latest experiments have enabled verifying that the quantum state of a photon can be maintained whilst transporting it into a crystal without the two coming directly into contact. One needs to imagine the crystal as a memory bank for storing the photon's information; the latter is transferred over these distances using the teleportation effect.

To read more, click here.