A team of researchers from the University of Southampton's Optoelectronics Research Centre (ORC) has developed a new way to fabricate a potential challenger to graphene.
Graphene, a single layer of carbon atoms in a honeycomb lattice, is increasingly being used in new electronic and mechanical applications, such as transistors, switches and light sources, thanks to the unprecedented properties it offers: very low electrical resistance, high thermal conductivity and mechanically stretchable yet harder than diamond.
Now, ORC researchers have developed molybdenum di-sulphide (MoS2), a similar material to graphene that shares many of its properties, including extraordinary electronic conduction and mechanical strength, but made from a metal (in this case molybdenum combined with sulphur).
This new class of thin metal/sulphide materials, known as transition metal di-chalcogenides (TMDCs), has become an exciting complimentary material to graphene. However, unlike graphene, TMDCs can also emit light allowing applications, such as photodetectors and light emitting devices, to be manufactured.