A theoretical study has modelled how radio waves behave when passing through the Great Pyramid of Giza in Egypt. Mikhail Balezin and colleagues at St Petersburg’s ITMO University in Russia and Germany’s Laser Zentrum Hannover used multipole analysis to approximate how the electromagnetic waves would be influenced by the famous landmark. As well as offering a new way to study interiors of huge structures, the technique is also being used to characterize pyramidal nanoparticles.
The interior of the Great Pyramid has been probed using various forms of radiation including cosmic muons. Indeed, the muon study has found evidence for a previously unknown chamber buried deep within the iconic structure.
Now, Balezin and colleagues have performed the first study of how the pyramid would interact with radio waves. They constructed a numerical model to simulate the behaviour of radio waves with wavelengths of 200-600 m as they passed through a virtual pyramid. Such wavelengths were chosen because they are slightly longer than the physical dimensions of the Great Pyramid, which is about 140 m tall and measures 230 m along each of its four sides.
To read more, click here.