In June, NASA’s Curiosity rover found new evidence preserved in rocks on Mars that suggests the planet could have supported ancient life, as well as new evidence in the Martian atmosphere that relates to the search for current life on the Red Planet. While not necessarily evidence of life itself, these findings are a good sign for future missions exploring the planet’s surface and subsurface.
Researchers reexamined the original, microfilm preserved, Viking gas chromatograph‐mass spectrometer data sets. They found evidence for the presence of chlorobenzene in Viking Lander 2 (VL‐2) data at levels corresponding to 0.08–1.0 ppb (relative to sample mass), in runs when the sample was heated to 350°C and 500°C. Additionally, we found a correlation between the temperature dependence of the chlorobenzene signal and the dichloromethane signal originally identified by the Viking gas chromatograph‐mass spectrometer team. They considered possible sources of carbon that may have produced the chlorobenzene signal, by reaction with perchlorate during pyrolysis, including organic carbon indigenous to the martian parent sample and instrument contamination. They conclude that the chlorobenzene signal measured by VL‐2 originated from martian chlorine sources. They show how the carbon source could originate from the martian parent sample, though a carbon source contributed from instrument background cannot yet be ruled out.
To read more, click here.