Scientists have just packed 18 qubits — the most basic units of quantum computing — into just six weirdly connected photons. That's an unprecedented three qubits per photon, and a record for the number of qubits linked to one another via quantum entanglement.

So why is this exciting?

All the work that goes on in a conventional computer, including whatever device you're using to read this article, relies on calculations using bits, which switch back and forth between two states (usually called "1" and "0"). Quantum computers calculate using qubits, which similarly waver between two states but behave according to the weirder rules of quantum physics. Unlike conventional bits, qubits can have indeterminate states — neither 1 nor 0, but a possibility of both — and become oddly connected or entangled, so that the behavior of one bit directly impacts the other. This, in theory, allows for all sorts of calculations that regular computers can barely pull off. (Right now, however, quantum computing is in its very early experimental stages, with researchers still testing the waters of what's possible, as in this study.)

To read more, click here.