Biological cells have the complex and miraculous ability to reconfigure and change the way they communicate with each other over time, allowing them to nimbly direct critical functions in the human body—from thinking to walking to fighting disease. A major challenge in materials science is developing nanomaterials that can replicate aspects of these cellular functions and integrate with living systems. In a paper published today in Nature Chemistry, a team of researchers led by scientists at the Advanced Science Research Center (ASRC) at The Graduate Center of The City University of New York detail how they have created synthetic materials with the ability to mimic some behaviors normally associated with living matter.
"The ability to self-assemble, reconfigure and disassemble in response to chemical signals is a common trait in biological materials, but not in man made ones" said Mohit Kumar, the paper's lead author and a scientist with Rein Ulijn's research group at the ASRC's Nanoscience Initiative and Hunter College. "If you want to integrate synthetic materials into biology, a seamless interface is desirable, which requires materials that share some of the properties of living matter. Our approach will hopefully open the door to man made materials that can interact with and repair living systems."