A precise, chemical-free method for etching nanoscale features on silicon wafers has been developed by a team from Penn State and Southwest Jiaotong University and Tsinghua University in China.

In standard lithography, a photosensitive film is deposited on a silicon wafer and a pattern called a mask is used to expose certain portions of the film. Then, chemicals—such as a potassium hydroxide solution—etch patterns into the silicon. Further steps are required to smooth out the roughened surface.

The Penn State and Southwest Jiaotong University researchers developed an entirely different, chemical- and mask-free, one-step process. They lightly rubbed a rounded silica tip of an instrument called a scanning probe microscope across a silicon substrate—the material base typically used to make electronic devices. When exposed to the water vapor in
air, the top layer of silicon forms bonds with the tip of the scanning probe, and a single layer of atoms slides off as the probe moves across the silicon. Because the atoms below do not take part in the chemical reaction, they are completely undamaged.

"It's really quite a unique idea," said Seong Kim, professor of chemical engineering, Penn State. "It's a so-called
tribochemical reaction. Unlike chemical reactions caused by heat, light or electric fields, which are all widely studied, mechanically-stimulated chemical reactions are less understood."

The removal mechanism is initiated when the silicon is exposed to air and the top atomic layer of silicon atoms reacts with water molecules to make silicon-oxygen-hydrogen bonds. Then the silicon oxide surface of the tip forms a silicon-oxide-silicon bond with the substrate surface under the
shear force of the moving tip. This facilitates the removal of the silicon atom from the topmost surface of the substrate.

People in nanofabrication who are trying to reduce the size of device features down to atomic-scale dimensions could find this technique useful, Kim believes.

To read more, click here.