For the first time, physicists have developed a method to visually image the entanglement between electrons. As these correlations play a prominent role in determining a molecule's wave function—which describes the molecule's quantum state—the researchers then used the new method to produce the first images of the square of the two-electron wave function of a hydrogen (H2) molecule.
Although numerous techniques already exist for imaging the individual electrons of atoms and molecules, this is the first method that can directly image the correlations between electrons and allow researchers to explore how the properties of electrons depend on one another.
The researchers, M. Waitz et al., from various institutes in Germany, Spain, the US, Russia, and Australia, have published a paper on the new imaging method in a recent issue of Nature Communications.