Albert Einstein predicted that whenever light from a distant star passes by a closer object, gravity acts as a kind of magnifying lens, brightening and bending the distant starlight. Yet, in a 1936 article in the journal Science, he added that because stars are so far apart "there is no hope of observing this phenomenon directly."

Now, an international research team directed by Kailash C. Sahu has done just that, as described in their June 9, 2017 article in Science. The study is believed to be the first report of a particular type of Einstein's "gravitational microlensing" by a star other than the sun.



Read more at: https://phys.org/news/2017-06-einstein-theory-relativity.html#jCp

Albert Einstein predicted that whenever light from a distant star passes by a closer object, gravity acts as a kind of magnifying lens, brightening and bending the distant starlight. Yet, in a 1936 article in the journal Science, he added that because stars are so far apart "there is no hope of observing this phenomenon directly."

Now, an international research team directed by Kailash C. Sahu has done just that, as described in their June 9,
2017 article in Science. The study is believed to be the first report of a particular type of Einstein's "gravitational microlensing" by a star other than the sun.

To read more, click here.