Currently, most parts of a smart phone are made of silicon and other compounds, which are expensive and break easily, but with almost 1.5 billion smart phones purchased worldwide last year, manufacturers are on the lookout for something more durable and less costly.

Dr Elton Santos from Queen's University's School of Mathematics and Physics, has been working with a team of top-notch scientists from Stanford University, University of California, California State University and the National Institute for Materials Science in Japan, to create new dynamic hybrid devices that are able to conduct electricity at unprecedented speeds and are light, durable and easy to manufacture in large scale semiconductor plants.

The team found that by combining semiconducting molecules C60 with layered materials, such as graphene and hBN, they could produce a unique material technology, which could revolutionise the concept of smart devices.

The winning combination works because hBN provides stability, electronic compatibility and isolation charge to graphene while C60 can transform sunlight into electricity. Any smart device made from this combination would benefit from the mix of unique features, which do not exist in materials naturally. This process, which is called van der Waals solids, allows compounds to be brought together and assembled in a pre-defined way.

To read more, click here.