Researchers at the University of Central Florida have developed a new color changing surface tunable through electrical voltage - a breakthrough that could lead to three times the resolution for televisions, smartphones and other devices.

Video screens are made up of hundreds of thousands of pixels that display different colors to form the images. With current , each of these pixels contain three subpixels—one red, one green, one blue.

But a scientific advancement in a lab at UCF's NanoScience Technology Center may eventually make that model a thing of the past. Assistant Professor Debashis Chanda and physics doctoral student Daniel Franklin have come up with a way to tune the color of these subpixels. By applying differing voltages, they are able to change the color of individual subpixels to red, green or blue - the RGB scale—or gradations in between.

"We can make a red subpixel go to blue, for instance," Chanda said. "In other displays that is not possible because they need three static color filters to show the full RGB color. We don't need that now; a single subpixel-less pixel can be tuned across a given color gamut."

The research was reported this month in the academic journal Nature Communications.



Read more at: https://phys.org/news/2017-05-drastically-higher-resolution-tv-smartphone.html#jCp

Researchers at the University of Central Florida have developed a new color changing surface tunable through electrical voltage - a breakthrough that could lead to three times the resolution for televisions, smartphones and other devices.

Video screens are made up of hundreds of thousands of pixels that display different colors to form the images. With current technology, each of these pixels
contain three subpixels—one red, one green, one blue.

But a scientific advancement in a lab at UCF's NanoScience Technology Center may eventually make that model a thing of the past. Assistant Professor Debashis Chanda and physics doctoral student Daniel Franklin have come up with a way to tune the color of these subpixels. By applying differing voltages, they are able to change the color of individual subpixels to red, green or blue - the RGB scale—or gradations in between.

"We can make a red subpixel go to blue, for instance," Chanda said. "In other displays that
is not possible because they need three static color filters to show the full RGB color. We don't need that now; a single subpixel-less pixel can be tuned across a given color gamut."

The research was reported this month in the academic journal Nature Communications.

To read more, click here.