Physicists at Utrecht University have created a 'quantum simulator,' a model system to study theoretical prognoses for a whole new class of materials. These 'supermaterials' include graphene, which has a two-dimensional structure and unique characteristics. The experiments conducted in Utrecht not only confirm the theoretical physicists' predictions, but also provided new insights. They have discovered that at higher energy levels, a simple rectangular lattice has characteristics that are normally only observed in exotic materials. The results of their research are Published in Nature Physics of 24 April 2017.

The characteristics of a material are determined by the atoms of which it is composed, and how they are organised. Calculations performed by show that in certain two-dimensional structures, atoms can be organised in such a way that a wide range of super-characteristics can be achieved. Until now, this research has been limited to theoretical predictions—many of the lattices that the physicists came up with simply did not exist in nature, nor have they been produced in the lab. However, using the method developed by the physicists in Utrecht, these results can now be tested experimentally.

"The basic idea is that we can make a two-dimensional crystal of electrons in any form we want," explains research leader Ingmar Swart. "That allows us to accurately determine the characteristics of the crystal, which enables us to conduct experiments on many of the ideas posited by our theoretical colleagues."

To read more, click here.