General Relativity and quantum theory, the two pillars of modern physics, although notoriously difficult to reconcile, may beautifully work together, as a new paper suggests. Here Ovidiu explains:

Moreover, the spacetime curvature and twisting create, manipulate and communicate quantum information encoded in light. Arguably, the reconciliation of General Relativity and quantum physics is probably the most difficult endeavor theoretical physics is encounter. Generations of brilliant physicists tackle this problem, but until now no notable results have emerged; unification of the two pillars of modern physics remains a beautiful dream. What if, in the absence of unification, spacetime and quantum information may concur and work beautiful together, as a team?

A recent article (Quantum gates implementation by X-ray single-photons around rotating black holes – https://arxiv.org/abs/1702.04640) pointed out a different angle of view the problem asserting that the spacetime shape (curvature and twisting) could literally process quantum information encoded in light. Roughly speaking the deformation of spacetime out of the straight Euclidean line may encode quantum information in photons traveling in that particular region.

The unique shape of spacetime required in order to execute quantum information processes may be encountered in regions close to spinning black holes, as the ones presumably living in the center of every galaxy. The rotating black holes dramatically alter the very fabric of spacetime in their vicinity. These ghostly astrophysical bodies drag and curve the spacetime around to the extreme.

To read more, click here.