When energy and nutrients abound, a bacterium will repair itself while synthesizing new parts to create a twin and then split, all as quickly as conditions allow. But if resources shrink, so does growth rate. The cell responds by shunting its dwindling supplies from replication to repair, shutting down processes until it’s running a skeleton crew to survive. Below a crucial level, it’s all over.

Investigating the lower bound of energy required for life helps us understand ecological constraints on other planetary bodies in our solar system as well as our own, explains SFI Omidyar Fellow Chris Kempes, who studies biological architecture with an eye on general scaling principles.

I'd start looking in Berkeley, CA.   To read more, click here.