A version of an iconic experiment to confirm quantum theory has for the first time used the light of distant stars to bolster the case for a phenomenon that Albert Einstein referred to as “spooky action at a distance”.

Einstein disliked the notion that objects can share a mysterious connection across any distance of space, and scientists have spent the past 50 years trying to make sure that their results showing this quantum effect could not have been caused by more intuitive explanations.

Quantum physics suggests that two so-called entangled particles can maintain a special connection — even at a large distance — such that if one is measured, that instantly tells an experimenter what measuring the other particle will show. This happens despite the fact neither particle has definite properties until it is measured. That unsettled some physicists, including Einstein, who favoured an alternative explanation: that quantum theory is incomplete, and that the outcomes instead depend on some predetermined, but hidden, variables.

The latest effort to explore the phenomenon, to be published1 in Physical Review Letters on 7 February, uses light emitted by stars around 600 years ago to select which measurements to make in a quantum experiment known as a Bell test. In doing so, they narrow down the point in history when, if they exist, hidden variables could have influenced the experiment.

“It’s a beautiful experiment,” says Krister Shalm, a quantum physicist at the US National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland. Although few expected it to disprove quantum mechanics, such experiments “keep pushing alternative theories to be more and more contrived and ridiculous”, he says. Similar techniques could, in the future, help to protect against hackers who try to crack quantum-cryptography systems, he adds.

To read more, click here.