Imaging very small materials takes not only great skill on the part of the microscopist, but also great instruments and techniques. For a refined microscopic look at biological materials, the challenges include getting an image that is free from "noise," the interference that can be caused by a number of items, including the area surrounding an item. Labels, dyes, or stains that are added in order to see the item more clearly can also present issues as they can affect the item that is to be scanned in unexpected ways—damaging or even killing biological materials.
Looking at microtubules is an interesting case in point. The hollow tubular structure serve as a backbone of cells and helps carry materials in the cell. Malfunctioning microtubules have been associated with various illnesses including cancer and Alzheimer's disease.
Understanding how microtubules function could be an important step in understanding disease progression. However, studying a single dynamic microtubule, which measures 24 nanometers in diameter, and up to 10 microns in length, is not an easy task.
Researchers in the Quantitative Light Imaging Laboratory at the Beckman Institute for Advanced Science and Technology at the University of Illinois have been able to use label-free spatial light interference microscopy (SLIM) and computer processing in order to image the microtubules in an assay. The study, "Label-Free Imaging of Single Microtubule Dynamics Using Spatial Light Interference Microscopy," was recently published in ACS Nano.
Being able to see the microtubules without the use of dyes or stains is a major contribution.
To read more, click here.