The quantum state of light has been squeezed more than ever before by physicists in Germany, who have developed a new low-loss technique. Squeezed light has been used to increase the sensitivity of gravitational wave detectors, and scientists are planning to deploy the new method on the GEO600 and LIGO gravitational wave detectors.

Detecting gravitational waves – the ripples in spacetime caused by energetic events in the Universe – relies on splitting a laser beam using an interferometer and sending the two halves back and forth along two orthogonal arms. When the two halves of the beam recombine, all the light normally comes out of one port of the interferometer. A passing gravitational wave will change the relative lengths of the two arms, creating an interference pattern and directing some of the light out of the "dark" port. However, by the time they reach Earth, gravitational waves from even the most dramatic events have tiny amplitudes, so sensitivity is crucial. The first confirmed discovery of a gravitational wave, announced by LIGO in February, was produced by the collision and merger of two black holes and changed the 4.2 km arm lengths by barely 10–19m (see "LIGO detects first ever gravitational waves – from two merging black holes").

To read more, click here.