Dmitry Fedyanin from the Moscow Institute of Physics and Technology and Mario Agio from the University of Siegen and LENS have predicted that artificial defects in the crystal lattice of diamond can be turned into ultrabright and extremely efficient electrically-driven quantum emitters. Their work published in New Journal of Physics demonstrates the potential for a number of technological breakthroughs, including the development of quantum computers and secure communication lines, which, in contrast to previously proposed schemes, would be able to operate at room temperature.
The research conducted by Dmitry Fedyanin and Mario Agio is focused on the development of efficient electrically-driven single-photon sources -- devices that emit single photons when an electrical current is applied. In other words, using such devices, one can generate a photon "on demand" by simply applying a small voltage across the devices, the probability of an output of zero photons is vanishingly low and generation of two or more photons simultaneously is fundamentally impossible.
To read more, click here.