Electronics is based on measuring the tiny electrical charge of electrons passing through electronic circuits. An alternative approach under development is spintronics, which instead relies not on electrons' charge, but on another of their fundamental quantum-mechanical properties: spin.

Spin can be visualised as the Earth turning on its own axis while rotating around the sun. In the same way, an electron spins on its own axis while rotating around an atom's nucleus. Spin is either "up" or "down". In the same way traditional electronics uses charge to represent information as zeros and ones, the two states can be used to represent the same binary data in spintronics.

Spin can be measured because it generates tiny magnetic fields. Ferrous metals such as iron become magnetic, for example, when enough particles have their spin set in the same direction, generating a of the same polarity as the spin.

Spintronics has several advantages over conventional electronics. Electronics require specialised semiconductor materials in order to control the flow of charge through the transistors. But spin can be measured very simply in common metals such as copper or aluminium. Less energy is needed to change spin than to generate a current to maintain electron charges in a device, so spintronics devices use less power.

Spin states can be set quickly, which makes transferring data quicker. And because electron spin is not energy-dependent, spin is non-volatile – information sent using spin remains fixed even after loss of power.

To read more, click here.