One hundred years after Albert Einstein developed his general theory of relativity, physicists are still stuck with perhaps the biggest incompatibility problem in the universe. The smoothly warped space-time landscape that Einstein described is like a painting by Salvador Dalí — seamless, unbroken, geometric. But the quantum particles that occupy this space are more like something from Georges Seurat: pointillist, discrete, described by probabilities. At their core, the two descriptions contradict each other. Yet a bold new strain of thinking suggests that quantum correlations between specks of impressionist paint actually create not just Dalí’s landscape, but the canvases that both sit on, as well as the three-dimensional space around them. And Einstein, as he so often does, sits right in the center of it all, still turning things upside-down from beyond the grave.
Like initials carved in a tree, ER = EPR, as the new idea is known, is a shorthand that joins two ideas proposed by Einstein in 1935. One involved the paradox implied by what he called “spooky action at a distance” between quantum particles (the EPR paradox, named for its authors, Einstein, Boris Podolsky and Nathan Rosen). The other showed how two black holes could be connected through far reaches of space through “wormholes” (ER, for Einstein-Rosen bridges). At the time that Einstein put forth these ideas — and for most of the eight decades since — they were thought to be entirely unrelated.
But if ER = EPR is correct, the ideas aren’t disconnected — they’re two manifestations of the same thing. And this underlying connectedness would form the foundation of all space-time. Quantum entanglement — the action at a distance that so troubled Einstein — could be creating the “spatial connectivity” that “sews space together,” according to Leonard Susskind, a physicist at Stanford University and one of the idea’s main architects. Without these connections, all of space would “atomize,” according to Juan Maldacena, a physicist at the Institute for Advanced Study in Princeton, N.J., who developed the idea together with Susskind. “In other words, the solid and reliable structure of space-time is due to the ghostly features of entanglement,” he said. What’s more, ER = EPR has the potential to address how gravity fits together with quantum mechanics.