Photonic quantum technologies – including cryptography, enhanced measurement and information processing – face a conundrum: They require single photons, but these are difficult to create, manipulate and measure. At the same time, quantum memories enable these technologies by acting as a photonic buffer. Therefore, an ideal part of the solution would be a single-photon on-demand read/write quantum memory. To date, however, development of a practical single-photon quantum memory has been stymied by (1) the need for high efficiency, (2) the read/write lasers used introducing noise that contaminates the quantum state, and (3) decoherence of the information stored in the memory.

Recently, scientists at National Research Council of Canada, Ottawa and Institute for Quantum Computing, University of Waterloo demonstrated storage and retrieval of terahertz-bandwidth single photons via a quantum memory in the optical phonons modes of a room-temperature bulk diamond. The researchers report that the quantum memory is low noise, high speed and broadly tunable, and therefore promises to be a versatile light-matter interface for local quantum processing applications. Moreover, unlike existing approaches, the novel device does not require cooling or optical preparation before storage, and is a few millimeters in size. The scientists conclude that diamond is a robust, convenient, and high-speed system extremely well-suited to evaluating operational memory parameters, studying the effects of noise, and developing quantum protocols.

To read more, click here.