A breakthrough by a team of researchers from UCLA, Columbia University and other institutions could lead to the more precise transfer of information in computer chips, as well as new types of optical materials for light emission and lasers.
The researchers were able to control light at tiny lengths around 500 nanometers -- smaller than the light's own wavelength -- by using random crystal lattice structures to counteract light diffraction. The discovery could begin a new phase in laser collimation -- the science of keeping lasers precise and narrow instead of spreading out.
The study's principal investigator was Chee Wei Wong, associate professor of electrical engineering at the UCLA Henry Samueli School of Engineering and Applied Science.
To read more, click here.