Holographic video displays, featuring three-dimensional images, are about to "go large" and become a lot more affordable at the same time, thanks to the work of a team of Brigham Young University (BYU) researchers and their collaborators at Massachusetts Institute of Technology (MIT).
It's all about manipulating light. Three of the primary methods include: reflection, refraction and diffraction. In this case, diffraction is the key, and essentially enables lines—almost any type—to bend and filter light.
In the journal Review of Scientific Instruments the team reports using surface acoustic waves as a dynamic pattern of lines to control light's angle and color composition.
How does it work? The magic happens on the surface of a special crystal called lithium niobate (LiNbO3), which boasts excellent optical properties. Beneath the surface of the LiNbO3, microscopic channels, or "waveguides," are created to confine light passing through. A metal electrode is then deposited onto each waveguide, which can produce surface acoustic waves.
To read more, click here.