Researchers at the INM -- Leibniz Institute for New Materials have now developed a new method that enables electroluminescence on large, curved surfaces in a cost-effective way: in this case, the light-emitting layer and all other components are produced by means of wet-chemical, printable methods.
Light-emitting diodes (LEDs) are the modern lighting devices used in lamps, signals, signs or displays. By contrast, organic semiconducting light-emitting materials (OLEDs) can be incorporated in thin layers and used on curved surfaces. However, OLEDs for large-area illumination are cost-intensive at present owing to their low efficiency and short lifetime.
One promising alternative for modern lighting is electroluminescence. Special nanoparticles, so-called phosphors, are excited in an electric field to emit light. Researchers at the INM -- Leibniz Institute for New Materials have now developed a new method that enables electroluminescence on large, curved surfaces in a cost-effective way: in this case, the light-emitting layer and all other components are produced by means of wet-chemical, printable methods.
From 28 to 30 January, the researchers from the INM will present this result and further results in the German Pavilion at nano tech 2015 in Tokyo, Japan.
Light walls and ceiling, anyone? To read more, click here.