ABSTRACT
In this paper we investigate the limits imposed by thermodynamics to a dark energy fluid. We obtain the heat capacities and the compressibilities for a dark energy fluid. These thermodynamical variables are easily accessible experimentally for any terrestrial fluid. The thermal and mechanical stabilities require these quantities to be positive. We show that such requirements forbid the existence of a cosmic fluid with negative constant EoS parameter which excludes vacuum energy as a candidate to explain the cosmic acceleration. We also show that the current observational data from SN Ia, BAO and H(z) are in conflict with the physical constraints that a general dark energy fluid with a time-dependent EoS parameter must obey which can be interpreted as an evidence against the dark energy hypothesis. Although our result excludes the vacuum energy, a geometrical cosmological term as originally introduced by Einstein in the field equations remains untouched.