A new study using observations from a novel instrument provides the best look to date at magnetic fields at the heart of gamma-ray bursts, the most energetic explosions in the universe. An international team of astronomers from Britain, Slovenia and Italy has glimpsed the infrastructure of a burst's high-speed jet.
Gamma-ray bursts are the most luminous explosions in the cosmos. Most are thought to be triggered when the core of a massive star runs out of nuclear fuel, collapses under its own weight, and forms a black hole. The black hole then drives jets of particles that drill all the way through the collapsing star and erupt into space at nearly the speed of light.
On March 8, 2012, NASA's Swift satellite detected a 100-second pulse of gamma rays from a source in the constellation Ursa Minor. The spacecraft immediately forwarded the location of the gamma-ray burst, dubbed GRB 120308A, to observatories around the globe.
The world's largest fully autonomous robotic optical telescope, the 2-meter Liverpool Telescope located at Roque de los Muchachos Observatory on La Palma in the Canary Islands, automatically responded to Swift's notification.
To read more, click here.