After its first run of more than three months, operating a mile underground in the Black Hills of South Dakota, a new experiment named LUX has proven itself the most sensitive dark matter detector in the world.
“LUX is blazing the path to illuminate the nature of dark matter,” says Brown University physicist Rick Gaitskell, co-spokesperson for LUX with physicist Dan McKinsey of Yale University. LUX stands for Large Underground Xenon experiment.
Gaitskell and McKinsey announced the LUX first-run results, on behalf of the collaboration, at a seminar today at the Sanford Underground Research Facility (Sanford Lab) in Lead, S.D. The Sanford Lab is a state-owned facility, and the U.S. Department of Energy (DOE) supports its operation. The LUX scientific collaboration, which is supported by the National Science Foundation and DOE, includes 17 research universities and national laboratories in the United States, the United Kingdom, and Portugal.
Dark matter, so far observed only by its gravitational effects on galaxies and clusters of galaxies, is the predominant form of matter in the universe. Weakly interacting massive particles, or WIMPs – so-called because they rarely interact with ordinary matter except through gravity – are the leading theoretical candidates for dark matter. The mass of WIMPs is unknown, but theories and results from other experiments suggest a number of possibilities.
LUX has a peak sensitivity at a WIMP mass of 33 GeV/c2 (see below), with a sensitivity limit three times better than any previous experiment. LUX also has a sensitivity that is more than 20 times better than previous experiments for low-mass WIMPs, whose possible detection has been suggested by other experiments. Three candidate low-mass WIMP events recently reported in ultra-cold silicon detectors would have produced more than 1,600 events in LUX’s much larger detector, or one every 80 minutes in the recent run. No such signals were seen.
To read more, click here.