Using ultra-fast laser pulses, a team of researchers led by UA assistant professor Vanessa Huxter has made the first detailed observation of how energy travels through diamonds containing nitrogen-vacancy centers – promising candidates for a variety of technological advances such as quantum computing.
A team of researchers led by University of Arizona assistant professor Vanessa Huxter has made the first detailed observation of how energy travels through diamonds that contain nitrogen-vacancy centers – defects in which two adjacent carbon atoms in the diamond's crystal structure are replaced by a single nitrogen atom and an empty gap.
These "flaws" result in unexpected and attractive properties that have put such diamonds in the spotlight as promising candidates for a variety of technological advances.
The findings, published online in Nature Physics, could help scientists better understand the properties of these diamonds, which have potential applications ranging from quantum computing to the imaging of individual atoms in molecules.