A team of researchers led by San Francisco State University's Weining Man is the first to build and demonstrate the ability of two-dimensional disordered photonic band gap material, designed to be a platform to control light in unprecedented ways.
The new material could allow researchers to manipulate the flow and radiation of light in new ways by breaking away from the highly angular and constrained pathways for light dictated inside orderly photonic crystals. Instead, the material could lead to arbitrarily shaped, wavy, curved, and sharply bending ways to steer light, Man and her colleagues say.
The findings were published in the Sept. 16 issue of the Proceedings of the National Academy of Sciences.
To read more, click here.