Take the pulse of the universe, and its invisible wrinkles become visible. The first direct evidence of Einstein's gravitational waves, may already exist in records of light pulses from rapidly spinning dead stars.
Crucially, we may uncover those waves as early as 2013. New research suggests that we've underestimated the rate at which black holes merge, and how that changes the light from pulsars.
Gravitational waves are produced by massive, accelerating objects, such as two black holes spinning towards each other (see diagram). The heavier the black holes are, and the faster they're moving, the more powerful those waves. As they move, the waves stretch and squash space-time like the folds of an accordion. Measuring the waves would be a powerful test of general relativity, and would offer a new wavelength for probing the universe.
To read more, click here.