In a discovery that helps clear a new path toward quantum computers, University of Michigan physicists have found elusive Dirac electrons in a superconducting material.
Quantum computers use atoms themselves to perform processing and memory tasks. They promise dramatic increases in computing power because of their ability to carry out scores of calculations at once. They could factor numbers dramatically faster than conventional computers, and would be game-changers for computer security.
The combination of properties the researchers identified in a shiny, black material called copper-doped bismuth selenide adds the material to an elite class that could serve as the silicon of the quantum era. Copper-doped bismuth selenide is a superconducting material.
Superconductors can—at cold enough temperatures—conduct electricity indefinitely from one kickstart of energy. They have no electrical resistance. Dirac electrons, named after the English physicist whose equation describes their behavior, are particles with such high energy that they straddle the realms of classical and quantum physics.
"They're a bridge between the worlds," says Lu Li, assistant professor of physics in the College of Literature, Science, and the Arts and leader of a study published in Physical Review Letters.
To read more, click here.