Absence of evidence is not necessarily evidence of absence. That’s what theoretical physicist John Ellis of King’s College London says of the latest result in the search for supersymmetry, an idea that has captivated particle physicists for 30 years.
Although researchers are still digesting the discovery of the Higgs boson, announced in July at CERN, Europe’s particle-physics laboratory near Geneva in Switzerland, more exotic creations are needed to fill out their picture of the subatomic world. The Higgs provides the last missing particle of the standard model of particle physics, but this theory still has some major deficiencies — it is silent on gravity and on what makes up dark matter, among other things. Supersymmetry (SUSY), which predicts that every standard-model particle has a heavier partner, is a step towards a more unified theory of the particles and forces.
Last week at a conference in Kyoto, Japan, physicists working on the LHCb experiment — one of four large detectors located around CERN’s Large Hadron Collider (LHC) — announced the hotly anticipated results of an indirect search for new superparticles, known by the cognoscenti as ‘sparticles’. The team clocked an extremely rare process in which a BS meson — composed of a strange quark and a bottom antiquark — decays into a muon–antimuon pair. Only one in roughly every 300 million BS mesons is predicted to do this, because the decay relies on a highly unlikely chain of events involving the fleeting appearance of virtual particles. But with the help of sparticles, the rate could increase by perhaps a factor of 100.
To read more, click here.