The idea of a warp drive in higher dimensional space-time (manifold) will then be briefly considered by comparing the null-like geodesics of the Alcubierre metric to the Chung-Freese metric to illustrate the mathematical role of hyperspace coordinates. The net effect of using a warp drive “technology” coupled with conventional propulsion systems on an exploration mission will be discussed using the nomenclature of early mission planning. Finally, an overview of the warp field interferometer test bed being implemented in the Advanced Propulsion Physics Laboratory: Eagleworks at the Johnson Space Center will be detailed.

The advantage of allowing a thicker warp bubble wall is that the integration of the total energy density for the right-most field is orders of magnitude less that the left-most field. The drawback is that the volume of the flat space-time in the center of the bubble is reduced. Still, a minimal reduction in flat space-time volume appears to yield a drastic reduction in total energy requirement that would likely outweigh reduced real-estate. Sloppy warp fields would appear to be “easier” to engineer than precise warp fields. Some additional appealing characteristics of the metric is that the proper acceleration α is zero, meaning there is no acceleration felt in the flat space-time volume inside the warp bubble when the field is turned on, and the coordinate time t in the flat space-time volume is the same as proper time τ, meaning the clocks on board the spacecraft proper beat at the same rate as clocks on earth.

This is the first mainstream paper I've read that directly addresses the important navigational issues associated with warp drive travel. One of the big questions that interests me, is how to point the ship in the right direction, without over or undershooting your destination. To read more, click here.