Two collaborations at the Tevatron have combined data from their searches for the Higgs boson and report evidence of a new particle decaying into heavy quark pairs. This could be the first experimental evidence that the same mechanism that gives mass to the carriers of the weak force also underlies the mass of quarks.
In the history of particle physics, 2012 will be remembered as a milestone. On July 4th, 2012, two experimental groups, ATLAS and CMS, which run independent detectors at the Large Hadron Collider (LHC), announced that after a year of dedicated searches for the Higgs boson, they had discovered a new particle with a mass of
125
giga-electron-volts (GeV). At this stage, we cannot yet be sure if this particle is really a Higgs boson, and additional studies and experimental verification will be needed to pin the new particle down. For now, the next set of experimental tests will be devoted to determining if this Higgs-boson-like particle behaves as predicted—or, what might be more interesting, finding out that it doesn’t. Now, complementing the discovery reports from the LHC, two experimental collaborations, CDF and D0, from the Tevatron at Fermilab, are reporting in Physical Review Letters the results of their Higgs search, which shows evidence that a particle, with a mass similar to the new particle discovered at the LHC, decays into quarks [1]. Such decays are expected to exist if the same mechanism underlies the masses of fermions as underlies the particles that mediate force (gauge bosons), but the new paper is the first experimental evidence that the decays are possible.
To read more, click here.