A team of researchers at Columbia Engineering, led by Applied Physics and Applied Mathematics Associate Professor Latha Venkataraman and in collaboration with Mark Hybertsen from the Center for Functional Nanomaterials at the U.S. Department of Energy's Brookhaven National Laboratory, has succeeded in performing the first quantitative characterization of van der Waals interactions at metal/organic interfaces at the single-molecule level.

In a study published online August 12 in the Advance Online Publication on Nature Materials's website , the team has shown the existence of two distinct binding regimes in gold-molecule-gold single-molecule junctions, using molecules containing nitrogen atoms at their extremities that are attracted to gold surfaces. While one binding mechanism is characterized by chemical interactions between the specific nitrogen and gold atoms, the other is dominated by van der Waals interactions between the molecule and the gold surface.

"A detailed understanding of van der Waals interactions is a key step towards design of organic electronic devices," says Sriharsha Aradhya, the study's lead author and a Ph.D. candidate working with Venkataraman. "Apart from the fundamental importance of these measurements, we are also excited about its applications. Understanding the effects of van der Waals interactions is tremendously important for creating and optimizing devices with organic building-blocks."

To read more, click here.