In quantum mechanics, entanglement is one of the bizarre behaviours exhibited by particles where the rules of classical physics are broken and seemingly impossible events are a reality. Described by Einstein as ‘spooky action at a distance’, entanglement is the phenomenon whereby two particles act as one system even when separated by immense distances. The entangled particles are in a superposition where their individual state isn’t known. However, as soon as one of them is measured or observed the other will take on a correlated state instantaneously, seemingly violating the speed of light. Being able to exploit such behaviour would have major applications in communications encryption and could underpin the next generation of computer technology, known as quantum computation. The team in the School of Physics and Astronomy comprising Matthew Edgar, Daniel Tasca and Professor Miles Padgett, have taken a step towards the development of such applications by measuring strong spatial entanglement of photons – particles of light - using a highly-sensitive camera. Making use of a 201 by 201 pixel array, the camera could observe the full field of the quantum light at the same time, allowing the team to see up to 2,500 different entangled dimensions or states.

Read more at: http://phys.org/news/2012-08-caught-camera-quantum-mechanics-action.html#jCp

n quantum mechanics, entanglement is one of the bizarre behaviours exhibited by particles where the rules of classical physics are broken and seemingly impossible events are a reality.

Described by Einstein as ‘spooky action at a distance’, entanglement is the phenomenon whereby two particles act as one system even when separated by immense distances.

The entangled particles are in a superposition where their individual state isn’t known. However, as soon as one of them is measured or observed the other will take on a correlated state instantaneously, seemingly violating the speed of light.

Being able to exploit such behaviour would have major applications in communications encryption and could underpin the next generation of computer technology, known as quantum computation.

The team in the School of Physics and Astronomy comprising Matthew Edgar, Daniel Tasca and Professor Miles Padgett, have taken a step towards the development of such applications by measuring strong spatial entanglement of photons – particles of light - using a highly-sensitive camera. Making use of a 201 by 201 pixel array, the camera could observe the full field of the quantum light at the same time, allowing the team to see up to 2,500 different entangled dimensions or states.

To read more, click here