Physicists say they've worked out how to video the quantum motion of an electron as it moves around a hydrogen atom, a step that has important implications for our understanding of biomolecules.
For decades, physicists have studied the way an electron ought to bind to a proton, the simplest atomic system. The fascinating patterns of hydrogen orbitals that form at different energy levels are static objects, calculated by detailed computer modelling. They are snapshots of hydrogen atoms frozen in time.
But the most advanced computer models can also calculate what hydrogen atoms look like as they switch from one state to another, how the orbitals change shape, how they combine and superpose. The results are videos of hydrogen orbitals in motion--quantum movement.
But all that is just theory. Nobody knows what hydrogen atoms look like in practice because it's impossible to photograph electrons with light, let alone make movies of them in action. Right?
Not quite. In recent years, physicists have learnt how to generate pulses of light that are small enough and short enough to tease apart the structure of a hydrogen atom. These pulses consist of x-rays in packets just a few wavelengths long.
In the next few years, this technique ought to be capable of making movies with a resolution of about an angstrom and a frame rate of an image per femtosecond. That's more than good enough to show the movement of hydrogen orbitals.
To read more, click here.