Hydrogen gas offers one of the most promising sustainable energy alternatives to limited fossil fuels. But traditional methods of producing pure hydrogen face significant challenges in unlocking its full potential, either by releasing harmful carbon dioxide into the atmosphere or requiring rare and expensive chemical elements such as platinum. |
|
Now, scientists at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory have developed a new electrocatalyst that addresses one of these problems by generating hydrogen gas from water cleanly and with much more affordable materials. The novel form of catalytic nickel-molybdenum-nitride – described in a paper published online May 8, 2012 in the journal Angewandte Chemie International Edition ("Hydrogen-Evolution Catalysts Based on Non-Nobel Metal Nickel–Molybdenum Nitride Nanosheets") – surprised scientists with its high-performing nanosheet structure, introducing a new model for effective hydrogen catalysis. |
|
"We wanted to design an optimal catalyst with high activity and low costs that could generate hydrogen as a high-density, clean energy source," said Brookhaven Lab chemist Kotaro Sasaki, who first conceived the idea for this research. "We discovered this exciting compound that actually outperformed our expectations." |
To read more, click here.