In a remarkable feat of micro-engineering, UNSW physicists have created a working transistor consisting of a single atom placed precisely in a silicon crystal.
The tiny electronic device, described today in a paper published in the journal Nature Nanotechnology, uses as its active component an individual phosphorus atom patterned between atomic-scale electrodes and electrostatic control gates.
This unprecedented atomic accuracy may yield the elementary building block for a future quantum computer with unparalleled computational efficiency.
Until now, single-atom transistors have been realised only by chance, where researchers either have had to search through many devices or tune multi-atom devices to isolate one that works.
"But this device is perfect", says Professor Michelle Simmons, group leader and director of the ARC Centre for Quantum Computation and Communication at UNSW. "This is the first time anyone has shown control of a single atom in a substrate with this level of precise accuracy."
This is a truly significant micro-engineering breakthrough. To read more, click here.