Research was published this week showing that silk produced by transgenically engineered silkworms in the laboratory of Malcolm Fraser Jr., professor of biological sciences at University of Notre Dame, exhibits the highly sought-after strength and elasticity of spider silk. This stronger silk could possibly be used to make sutures, artificial limbs and parachutes.
The findings were published in the Proceedings of the National Academy of Sciences and highlighted for their breakthrough in the long search for silk with such mechanical properties. The manuscript was published after an in-depth peer review process, and was deemed by the publishers as a newsworthy article of the issue in which it appears, further indicating its relative importance to science and technology.
"It's something nobody has done before," Fraser says. The project, which used Fraser's piggyBac vectors to create transgenic silkworms with both silkworm and spider silk proteins, was a collaboration of his laboratory with Donald Jarvis and Randolph Lewis at the University of Wyoming. Jarvis' lab made the transgene plasmids, while Fraser's lab made the transgenic silkworms and Lewis' lab analyzed the fiber from the silkworms. Results showed that the fibers were tougher than typical silkworm silk and as tough as dragline silk fibers produced by spiders, demonstrating that silkworms can be engineered to produce such improved fibers.
This is a big deal. Technology like this can get America back on track and working again. To read more, click here.