Superconductors have intrigued physicists for decades. But these materials, which allow the perfect, lossless flow of electrons, usually only exhibit this quantum-mechanical peculiarity at temperatures so low—a few degrees above absolute zero—as to render them impractical.
A research team led by Harvard Professor of Physics and Applied Physics Philip Kim has demonstrated a new strategy for making and manipulating a widely studied class of higher-temperature superconductors called cuprates, clearing a path to engineering new, unusual forms of superconductivity in previously unattainable materials.
Using a uniquely low-temperature device fabrication method, Kim and his team report in the journal Science a promising candidate for the world's first high-temperature, superconducting diode—essentially, a switch that makes current flow in one direction—made out of thin cuprate crystals.
Such a device could theoretically fuel fledging industries like quantum computing, which rely on fleeting mechanical phenomena that are difficult to sustain.
"High-temperature superconducting diodes are, in fact, possible, without application of magnetic fields, and open new doors of inquiry toward exotic materials study," Kim said.
To read more, click here.